Data Science\
o/v 4
Q Reproducible
ways of working

Icon credits:

Alexandr Cherkinsky

Jason Long

Freepik, Becris from flaticon.com

3

http://bit.ly/tt-repres

TechTalk:
Tools and Techniques for
Reproducible Research

Martin Callaghan
Research Computing

http://bit.ly/tt-repres

What are these talks?

We’re hoping a monthly series of talks:

e On interesting technical topics relevant to a wide range of researchers

e Some news about what we're up to in Research Computing...
o Hint: It's not just HPC

e Given by us, by some of you and you’ll also get to hear from some of our RSE
colleagues from across the UK.

http://bit.ly/tt-repres

This first series of talks

e Some of the tools and techniques we use (and perhaps you do too) that help
make the computational aspects of the research process more straightforward
and assist in reproducibility.

e Some upcoming events on the same theme:

o Reprohack (February 14th 2020)
o RSS Meeting (April 21st 2020)

http://bit.ly/tt-repres

https://n8cir.org.uk/events/reprohack-leeds/

ROYAL
STATISTICAL

SOCIETY @RSSLeedsBrad

DATA | EVIDENCE | DECISIONS

Up-coming MEETING
Tuesday 215t April 2020

Anna Krystalli + Michael Croucher

Research reproducibility and good practice in
statistical software

Room MALL 2, School of Mathematics
Refreshments 14:30-15:00, Presentation 15:00-16:30

Website: https://sites.google.com/site/rssleedsbradford/home/2019---2020-session

http://bit.ly/tt-repres

Who's the ‘we’: Research Computing...

Mark Conmy
Martin Callaghan
Alex Coleman
Nick Rhodes
Ollie Clark

John Hodrien
Sam Crossfield
Phil Chambers
Adam Keeley

http://bit.ly/tt-repres

On with the show...

http://bit.ly/tt-repres

Our motivation...

You CAN RE-USE THE \
SOFTWARE TUAT TUE

DON'T WORRY,
You DON'T HAVE
TO START YOUR

COPE FROM
SCRATCH,

http://bit.ly/tt-repres

Why all the fuss?

HAVE YOU FAILED TO REPRODUCE ;
AN EXPERIMENT? IS THERE A REPRODUCIBILITY CRISIS:

Most scientists have experienced failure to reproduce results.

7% 52%
® Someone else’s & My own Don’t know Yes, a significant crisis

3% \

Chemistry No, there is_n'o
Crisis ——

Biology

Physics and

engineering] 576
3

researchers

Medicine
surveyed

Earth and
environment
38%
Yes, a slight
: : : : : crisis
60 80 100% onature

Other

40

0 2:0
Number of respondents from each discipline:

Biology 703, Chemistry 106, Earth and environmental 95,

Medicine 203, Physics and engineering 236, Other 233 onature http:/ibit.ly/tt-repres

Today we're going to concentrate on code:

e Data is the topic for another TechTalk
We’'re going to give an overview of

Conda to manage dependencies

Containers to record environments

Workflow Tools (SnakeMake) to record computational steps
A mention of Virtual Machines to record environments

Dangerously, there will be live demonstrations.

http://bit.ly/tt-repres

Starting points

Good project practice

Version Control (!)

http://bit.ly/tt-repres

Project management

A good starting point is to keep all files associated with a project in a single
folder
Different projects should have separate folders
Use consistent and informative directory structure
If you need to separate public/private/secret, separate these by folder (and Git
repo)
Add a README file to describe the project and instructions on reproducing
the results
Talk to others in the project about what you do and write it down
When software is reused in several projects it can make sense to put them in
own repo

http://bit.ly/tt-repres

Directory organisation

project_name/

README . md

data/

README . md

L— sub-folder/
processed_data/
manuscript/

results/

src/

— LICENSE

— requirements.txt

doc/

— index.rst
I_ "

HOH R R HEH R HHE

H

overview of the project

data files used in the project

describes where data came from

may contain subdirectories

intermediate files from the analysis
manuscript describing the results

results of the analysis (data, tables, figures)
contains all code in the project

license for your code

software requirements and dependencies

documentation for your project

epres

Conda

Our codes often depend on other codes that in turn depend on other codes ...

e Reproducibility: We can control our code but how can we control
dependencies (packages, libraries)?

e 10-year challenge: Try to build/run your own code that you have created 10
(or fewer) years ago. Will your code from today work in 5 years if you don’t
change it?

e Dependency hell: Different codes on the same environment can have
conflicting dependencies.

http://bit.ly/tt-repres

Conda

Tools like Conda try to solve the following problems:

e Install a specific set of dependencies, usually with well defined versions

e Recording those versions for all dependencies

e Isolate environments on your computer for projects that have conflicting
dependencies

e Isolate environments on computers with many users (eg. HPC)

e Using different Python/R versions per project

e Provide tools and services to share packages

http://bit.ly/tt-repres

Wt i Ll L b Ll L et Bt ettt b byt
Conda e }m\gm,

THE PALKAGER
CNVRONMENT
MANAGCR.
3 l ‘ PACLAGE &
2. THEN (ONDA PAQEASE - ‘ l PACKAGE 3
The tooT PACE l PACKAGE 2 | PAWAGE 2
ENVIRONMENT PACKAGE A l PALVAGE 4 \ PAKAGE 4
_> LFYTHON veesion X PYTHON VERSION Y FTHON VERSIoN 2
4 o
RoOT \ ADDITIONAL | apprmiovAL
3. PYTHON IS ENVIRONMENT ENVIRONMENT 4 ENVIRONMENT 2.
BEING INSTALLED \3 /
bl ng b4, LATER You (AN 5. Vc\:FGﬂEUI Gm‘l?\me;\:ﬁg
ADD AS MANY ADDITIONAL N CONTA\N
ENVIRONMENTS AS Yo wWANT PTHON VERSIONS AND
(AND You (AN NANC T WHAT JER DIEFERENT SETS OF
Yo uVé) PACKAGES

http://bit.ly/tt-repres

Conda

You might be using it already, remember:

e Not only for Python: any language, also binaries.

Created by Continuum Analytics, part of Anaconda/Miniconda, but can be
installed standalone.

Open source BSD license.

Manages isolated software environments.

Allows you to create and share conda packages.

Miniconda is a lightweight alternative to Anaconda.

Can be installed on your computer (Windows, Mac, Linux) without Admin
rights

http://bit.ly/tt-repres

Let’s have a go...

http://bit.ly/tt-repres

Summary

Capturing software dependencies is a must for reproducibility.

Files like requirements.txt, environment.yml, should be part of the source
repository.

Be sceptical (or even annoyed) when you see dependency lists without versions.

http://bit.ly/tt-repres

Containers

You might have heard of tools like

e Docker
e Singularity

Containers can be built to bundle all the necessary ingredients (data, code,
environment).

A container provides operating-system-level virtualisation, sharing the host
system’s kernel with other containers. It's an easy way to run (eg) Linux
applications on a Mac/ Windows, Ubuntu on Centos, etc.

http://bit.ly/tt-repres

Docker

e Available for most common operating systems.

e A mechanism to “send the computer to the data” when data is too large or too
sensitive to travel over network.

e DockerHub is a platform to share Docker images (stored in repositories -
similar to a Git repository).

e A wide range of public Docker images available on DockerHub.

http://bit.ly/tt-repres

Singularity

e Singularity is aimed at the scientific community and to run scientific workflows
on (mainly) HPC resources.

e Docker images can be converted into Singularity images.

e There’s a Singularity Hub to share images and recipes

http://bit.ly/tt-repres

Container vs. image vs. recipe (Dockerfile)

Image is like a blueprint. It is immutable.
Container is an instance of an image.

Dockerfile is a recipe which creates a container based on an image and
potentially applies small changes to it.

http://bit.ly/tt-repres

Warning!
Check the provenance of images on Dockerhub and Singularity Hub!

e Do you know where the image or recipe comes from?
e Do you trust the developer?
e (Can you read the recipe and see what was built inside the image?

http://bit.ly/tt-repres

Pros...

e Allow for seamlessly moving workflows across different platforms.

e Much more lightweight than virtual machines.

e Eliminates the “works on my machine” situation.

e For software with many dependencies with in turn it's own dependencies

possibly the only (?) way to preserve the computational experiment for future
reproducibility.

http://bit.ly/tt-repres

Cons ...

e Containers can have security vulnerabilities which can be exploited.

e Can be used to hide away software installation problems and thereby
discourage good software development practices.

e [t may not be clear whether to record the environment in the image part or the
recipe part.

http://bit.ly/tt-repres

Scientific Workflow management systems

To reproduce a number of steps in a computational workflow, we could:

Remember what buttons we clicked in a GUI

Type in a set of commands over and over to reproduce the steps
Write a (BASH) script- a list of our commands

Use GNU Make (which is great, but better for building software...)
Use a specialist tool like Snakemake

http://bit.ly/tt-repres

http://snakemake

Snakemake

e Gentle learning curve.
e Free, open-source, and installs easily via conda.
e Cross-platform (Windows, MacOS, Linux) and compatible with HPC

e Same workflow works without modification and scales whether on a laptop or
cluster.

e Heavily used in bioinformatics, but is completely general.

http://bit.ly/tt-repres

How does it work?

Tell Snakemake what files
you want to be created

Produce the files

you want to have from
some infermediate
resuld

Create a needed
intermediate resuld

rule:
input: "A.txt®, "B.txt®, "C.txt®

output: "{sample}.txt”
shell: "somecommand {input} {output}”

rule: Use wildcards fo write
input: “{sample}.in" ‘ ‘
output: “{sample}.inter” general rules

run:
somepythoncode() _} a“ samp|es

the dependencies
rule: ety oy o _\/'K\
e \

Snakemake determines

-
|

http://bit.ly/tt-repres

Let’s have a go...

http://bit.ly/tt-repres

Visualising the workflow

Snakemake can conveniently create a DAG to help visualise the workflow.
snakemake --dag | dot -Tpng > dag.png

Rules yet to be completed have solid outlines, completed rules have dotted
outlines.

http://bit.ly/tt-repres

A Snakemake DAG

count_words count_words count_words count_words

file: abyss file: isles file: sierra file: last
7 A

make_plot make_plot ' zipf_test | make_plot make_plot
\ /

make_archive

all

http://bit.ly/tt-repres

Summary

GUIs may or may not be reproducible.

Some GUIs can be automated, many cannot.

Typing the same series of commands for 100 similar inputs is tedious and error prone.
Imperative scripts are reproducible and great for automation.

Declarative workflows such as Snakemake are great for longer multi-step analyses.
Declarative workflows are often easy to parallelise without you changing anything.
With declarative workflows it is straightforward to add/change things late on in the
project.

e Interesting modern alternative to Make/Snakemake: https://taskfile.dev

http://bit.ly/tt-repres

Any questions?

http://bit.ly/tt-repres

More information:

The Turing Way:
https://www.turing.ac.uk/research/research-projects/turing-way-handbook-reprodu

cible-data-science

Coderefinery:
https://coderefinery.org

http://bit.ly/tt-repres

https://www.turing.ac.uk/research/research-projects/turing-way-handbook-reproducible-data-science
https://www.turing.ac.uk/research/research-projects/turing-way-handbook-reproducible-data-science
https://coderefinery.org

Feedback

Please spare a few minutes now or later to give us a bit of feedback:

http://bit.ly/ttfbjan20

http://bit.ly/tt-repres

http://bit.ly/ttfbjan20

