
http://bit.ly/tt-repres

TechTalk slide



http://bit.ly/tt-repres

TechTalk:
Tools and Techniques for 
Reproducible Research

Martin Callaghan
Research Computing



http://bit.ly/tt-repres

What are these talks?
We’re hoping a monthly series of talks:

● On interesting technical topics relevant to a wide range of researchers

● Some news about what we’re up to in Research Computing…
○ Hint: It’s not just HPC

● Given by us, by some of you and you’ll also get to hear from some of our RSE 
colleagues from across the UK.



http://bit.ly/tt-repres

This first series of talks
● Some of the tools and techniques we use (and perhaps you do too) that help 

make the computational aspects of the research process more straightforward 
and assist in reproducibility.

● Some upcoming events on the same theme:
○ Reprohack (February 14th 2020)
○ RSS Meeting (April 21st 2020)

https://n8cir.org.uk/events/reprohack-leeds/


http://bit.ly/tt-repres



http://bit.ly/tt-repres

Who’s the ‘we’: Research Computing...
Mark Conmy
Martin Callaghan
Alex Coleman
Nick Rhodes
Ollie Clark
John Hodrien
Sam Crossfield
Phil Chambers
Adam Keeley



http://bit.ly/tt-repres

On with the show...



http://bit.ly/tt-repres

Our motivation...



http://bit.ly/tt-repres

Why all the fuss?



http://bit.ly/tt-repres

Today we’re going to concentrate on code:
● Data is the topic for another TechTalk
● We’re going to give an overview of 

● Conda to manage dependencies
● Containers to record environments
● Workflow Tools (SnakeMake) to record computational steps
● A mention of Virtual Machines to record environments

Dangerously, there will be live demonstrations.



http://bit.ly/tt-repres

Starting points
Good project practice

Version Control (!)



http://bit.ly/tt-repres

Project management
● A good starting point is to keep all files associated with a project in a single 

folder
● Different projects should have separate folders
● Use consistent and informative directory structure
● If you need to separate public/private/secret, separate these by folder (and Git 

repo)
● Add a README file to describe the project and instructions on reproducing 

the results
● Talk to others in the project about what you do and write it down
● When software is reused in several projects it can make sense to put them in 

own repo



http://bit.ly/tt-repres

Directory organisation



http://bit.ly/tt-repres

Conda
Our codes often depend on other codes that in turn depend on other codes …

● Reproducibility: We can control our code but how can we control 
dependencies (packages, libraries)?

● 10-year challenge: Try to build/run your own code that you have created 10 
(or fewer) years ago. Will your code from today work in 5 years if you don’t 
change it?

● Dependency hell: Different codes on the same environment can have 
conflicting dependencies.



http://bit.ly/tt-repres

Conda
Tools like Conda try to solve the following problems:

● Install a specific set of dependencies, usually with well defined versions
● Recording those versions for all dependencies
● Isolate environments on your computer for projects that have conflicting 

dependencies
● Isolate environments on computers with many users (eg. HPC)
● Using different Python/R versions per project
● Provide tools and services to share packages



http://bit.ly/tt-repres

Conda



http://bit.ly/tt-repres

Conda
You might be using it already, remember:

● Not only for Python: any language, also binaries.
● Created by Continuum Analytics, part of Anaconda/Miniconda, but can be 

installed standalone.
● Open source BSD license.
● Manages isolated software environments.
● Allows you to create and share conda packages.
● Miniconda is a lightweight alternative to Anaconda.
● Can be installed on your computer (Windows, Mac, Linux) without Admin 

rights



http://bit.ly/tt-repres

Let’s have a go...



http://bit.ly/tt-repres

Summary
Capturing software dependencies is a must for reproducibility.

Files like requirements.txt, environment.yml, should be part of the source 
repository.

Be sceptical (or even annoyed) when you see dependency lists without versions.



http://bit.ly/tt-repres

Containers
You might have heard of tools like

● Docker
● Singularity

Containers can be built to bundle all the necessary ingredients (data, code, 
environment).

A container provides operating-system-level virtualisation, sharing the host 
system’s kernel with other containers. It’s an easy way to run (eg) Linux 
applications on a Mac/ Windows, Ubuntu on Centos, etc.



http://bit.ly/tt-repres

Docker
● Available for most common operating systems.

● A mechanism to “send the computer to the data” when data is too large or too 
sensitive to travel over network.

● DockerHub is a platform to share Docker images (stored in repositories - 
similar to a Git repository).

● A wide range of public Docker images available on DockerHub.



http://bit.ly/tt-repres

Singularity
● Singularity is aimed at the scientific community and to run scientific workflows 

on (mainly) HPC resources.

● Docker images can be converted into Singularity images.

● There’s a Singularity Hub to share images and recipes



http://bit.ly/tt-repres

Container vs. image vs. recipe (Dockerfile)
Image is like a blueprint. It is immutable.

Container is an instance of an image.

Dockerfile is a recipe which creates a container based on an image and 
potentially applies small changes to it.



http://bit.ly/tt-repres

Warning!
Check the provenance of images on Dockerhub and Singularity Hub!

● Do you know where the image or recipe comes from?
● Do you trust the developer?
● Can you read the recipe and see what was built inside the image?



http://bit.ly/tt-repres

Pros...
● Allow for seamlessly moving workflows across different platforms.

● Much more lightweight than virtual machines.

● Eliminates the “works on my machine” situation.

● For software with many dependencies with in turn it’s own dependencies 
possibly the only (?) way to preserve the computational experiment for future 
reproducibility.



http://bit.ly/tt-repres

Cons …
● Containers can have security vulnerabilities which can be exploited.

● Can be used to hide away software installation problems and thereby 
discourage good software development practices.

● It may not be clear whether to record the environment in the image part or the 
recipe part.



http://bit.ly/tt-repres

Scientific Workflow management systems
To reproduce a number of steps in a computational workflow, we could:

● Remember what buttons we clicked in a GUI
● Type in a set of commands over and over to reproduce the steps
● Write a (BASH) script- a list of our commands
● Use GNU Make (which is great, but better for building software…)
● Use a specialist tool like Snakemake

http://snakemake


http://bit.ly/tt-repres

Snakemake
● Gentle learning curve.

● Free, open-source, and installs easily via conda.

● Cross-platform (Windows, MacOS, Linux) and compatible with HPC

● Same workflow works without modification and scales whether on a laptop or 
cluster.

● Heavily used in bioinformatics, but is completely general.



http://bit.ly/tt-repres

How does it work?



http://bit.ly/tt-repres

Let’s have a go…



http://bit.ly/tt-repres

Visualising the workflow
Snakemake can conveniently create a DAG to help visualise the workflow.

snakemake --dag | dot -Tpng > dag.png

Rules yet to be completed have solid outlines, completed rules have dotted 
outlines.



http://bit.ly/tt-repres

A Snakemake DAG



http://bit.ly/tt-repres

Summary
● GUIs may or may not be reproducible.
● Some GUIs can be automated, many cannot.
● Typing the same series of commands for 100 similar inputs is tedious and error prone.
● Imperative scripts are reproducible and great for automation.
● Declarative workflows such as Snakemake are great for longer multi-step analyses.
● Declarative workflows are often easy to parallelise without you changing anything.
● With declarative workflows it is straightforward to add/change things late on in the 

project.
● Interesting modern alternative to Make/Snakemake: https://taskfile.dev



http://bit.ly/tt-repres

Any questions?



http://bit.ly/tt-repres

More information:
The Turing Way: 
https://www.turing.ac.uk/research/research-projects/turing-way-handbook-reprodu
cible-data-science

Coderefinery:
https://coderefinery.org

https://www.turing.ac.uk/research/research-projects/turing-way-handbook-reproducible-data-science
https://www.turing.ac.uk/research/research-projects/turing-way-handbook-reproducible-data-science
https://coderefinery.org


http://bit.ly/tt-repres

Feedback
Please spare a few minutes now or later to give us a bit of feedback:

http://bit.ly/ttfbjan20

http://bit.ly/ttfbjan20

